
From: jose lorenzo [e-mail redacted]
Sent: Monday, September 27, 2010 7:26 AM
To: Bilski_Guidance
Cc: [e-mail redacted]
Subject: Submission due by Monday, September 27

To whom it may concern,

Thank you for giving the public the opportunity to comment on adjusting the
valuation and granting of patents in light of the SCOTUS Bilski decision.

This comment will focus on the restrictions that could take place at the
USPTO to limit the granting of software patents so as to bring that domain in
line with past Supreme Court rulings, most notably, with Bilski.

The Bilski decision did not say too much that was new. The minority of the
Court that seemed more open towards the possibility of a valid patent
existing on information processing explicitly stated they did not take a
position for or against software patents. Meanwhile, a different and equally
sized minority largely rejected software (and business method) patents.
Where there was agreement was that the patent in question was abstract (all
Justices rejected the patent) and that the machine-or-transformation test for
process patents is a very good yet incomplete test.

It's important to mention that the Court appears to reject entirely patents on
algorithms and has not cited a single case of an acceptable patent for a
software program running on a programmable device if the purpose of that
software was merely to manipulate or generate information and perform
nothing else of use with that information or merely use that information in
very standard ways such as to display the contents of the information. There
were frequent appeals to the Flook case, and the references to Diehr focused
on the overall transformation being achieved with matter within an industrial
process. In contrast, the particular Bilski patent in question which created no
new machine and which referred generally to processes humans could carry
out with ordinary tools was universally rejected.

Additionally to this, it's important to keep in mind that patent granting
potentially involves creating many restrictions on what individuals may do.
The section of the US Constitution generally believed to support the Patent
Act includes a criteria that the progress be promoted. The First Amendment to
the US Constitution supports individual's free speech (especially if fairly
original) with few bounds placed on it. For this reason, the USPTO has a great
responsibility not to go too far granting exclusivities that would tax too many
individuals in ways not supported by our laws.

With all of this in mind, I suggest the USPTO consider adopting the essence of
one or more of the following two rules:

R1 -- In light of the fact that the machine-or-transformation test may not
cover every single case, but considering that it is a well supported test and
exceptions appear lacking, consider placing a soft upper bound to the number
of patents awarded annually on inventions that do not pass this test. This soft
upper bound should be fairly small, I would presume, and would serve as a
check on other USPTO rules. Because granted exclusivities can lead to
significant damage to competitors and to consumers (not to mention to
individual liberties), the USPTO should not take the attitude of granting when
in doubt. Having an upper limit would help contain damage, without
removing the granting possibility entirely, and would be a safe position
consistent with all prior Court rulings related to "software patents".

R2a -- Do not grant patents (except at most a token sum) for data processing
of any kind where the processing is not intimately a part of an industrial
process or generally is not intimately a part of a manufacture. A variation of
this is to forbid patent grants for inventions composed significantly of
software created for and used on consumer devices.

i - The main motivation for this is that such software generally simply
manipulate information very much the same way accomplish mentally by
humans and rejected by the Court: through pure algorithms entirely founded
on mathematics (eg, symbol manipulation) and where the information
quantity is all well defined, discrete, and finite (ie, where Mother Nature's
secrets have been factored out in the creation of the digitalization processing
model (aka, digitalization abstraction)).

ii -- A further motivation is that software creation and distribution is an
important part of self-expression. Patents that can hinder such expression of
many people are also making moot the protections reserved to the public by
copyright law (and which help avoid violations of independent original
expression protected by the First Amendment).

iii -- Another important issue is that software creation and use on
(programmable) consumer devices is extremely inexpensive to produce and
replicate so that patent exclusivities would imply a potentially very
significant liability on society.

iv -- Yet another consideration is that vast quantities of open source software
are being created, and these provide much to the common good ("promoting
the progress" and improving the "general welfare") and usually much more
transparency than do patent application details. Currently, open source
software is not excluded from the scope of patent grants, and patents are in
fact being granted that negatively affect a whole lot of original works created
in open source fashion.

R2b -- A softening of R2a would forbid patents for consumer devices only to
the extent the software instructions are loaded in a reprogrammable fashion.

I would like to add some more discussion in support of these rules.

First, and mostly in support of R2a ii, from Eldred v. Ashcroft, 537 U.S. 186,
219-20 (2003):

>> In addition to spurring the creation and publication of new expression,
copyright law contains built-in First Amendment accommodations. See id., at
560, 105 S.Ct. 2218. First, it distinguishes between ideas and expression and
makes only the latter eligible for copyright protection. Specifically, 17 U.S.C. §
102(b) provides: “In no case does copyright protection for an original work of
authorship extend to any idea, procedure, process, system, method of
operation, concept, principle, or discovery, regardless of the form in which it
is described, explained, illustrated, or embodied in such work.” As we said in
Harper & Row, this “idea/expression dichotomy strike[s] a definitional
balance between the First Amendment and the Copyright Act by permitting
free communication of facts while still protecting an author's expression.”
471 U.S., at 556, 105 S.Ct. 2218 (internal quotation marks omitted). Due to
this distinction, every idea, theory, and fact in a copyrighted work becomes
instantly available for public exploitation at the moment of publication. See
Feist, 499 U.S., at 349-350, 111 S.Ct. 1282.

Software patents would appear to run afoul of our First Amendment if the
indication above is correct that ideas and processes should not be given
exclusivity as a matter of free speech. This is a major reason why patents
should not apply to processes and machines that are relatively inexpensive
and/or within the reach of most individuals.

[For completeness, I'd like to point out that, in addition to the actual software
source code write-up, a *software binary* driving a computing machine is an
important way to communicate, as it creates an important unique expression
through ordinary output devices. Software source code per se does not
substitute for the machine display or machine driven effect any more than a
set of written instructions on paper substitutes for a visual work of art
generated from those instructions.]

Specific to open source software, such software is designed primarily to be
sharable by all. It is free speech in both major senses of the word "free", and
this speech most certainly includes the software running on a computing
device.

Second, quoted via "Justice Breyer, with whom Justice Scalia joins as to Part
II, concurring in the judgment:"

>> “[T]he underlying policy of the patent system [is] that ‘the things which
are worth to the public the embarrassment of an exclusive patent,’ ... must
outweigh the restrictive effect of the limited patent monopoly.” Graham v.
John Deere Co. of Kansas City.

Third,

>> the Court has long held that “[p]henomena of nature, though just
discovered, mental processes, and abstract intellectual concepts are not
patentable” under §101

Software's entire essence is the precise step by step application of a model.
This is made possible by the abstraction referred to as "digitalization". It is
completely removed from all tangible realities except to the extent it is
executed by a real thing (eg, by a human mind or by a computer) and to the
extent it is intended to model a part of reality. In one important use, it
creates virtual realities (eg, as is also the essence of fictional works). In other
uses, it's little but a glorified calculator carrying out the supplied
mathematical algorithms.

For these reason, I believe software patents should not be awarded unless, as
the Court has ruled and as was reinforced strongly in Bilski through several
agreeing minority opinions covering the majority of Justices, it is but a part of
a larger process involved in the transformation of matter.

Exceptions might exist, but these would likely be very limited in number if
existing at all (and, hence, the recommendation for R1 given above).

Fourth, we can find lots of support by the Court for rejecting computer
applications.

From the majority opinion in Bilski:

>> §101. 409 U. S., at 64–67. The Court first explained that “ ‘[a] principle, in
the abstract, is a fundamental truth; an original cause; a motive; these cannot
be patented, as no one can claim in either of them an exclusive right.’ ” Id., at
67 (quoting Le Roy, 14 How., at 175). The Court then held the application at
issue was not a “process,” but an unpatentable abstract idea. “It is conceded
that one may not patent an idea. But in practical effect that would be the
result if the formula for converting ... numerals to pure binary numerals were
patented in this case.” 409 U.S., at 71. A contrary holding “would wholly pre
empt the mathematical formula and in practical effect would be a patent on
the algorithm itself.” Id., at 72.

>> The application’s only innovation was reliance on a mathematical
algorithm. 437 U.S., at 585–586.

>> Nevertheless, Flook rejected “[t]he notion that post-solution activity, no
matter how conventional or obvious in itself, can transform an unpatentable
principle into a patentable process.” Id., at 590.

>> The Court concluded that the process at issue there was “unpatentable
under §101, not because it contain[ed] a mathematical algorithm as one
component, but because once that algorithm [wa]s assumed to be within the
prior art, the application, considered as a whole, contain[ed] no patentable
invention.” Id., at 594.

>> As the Court later explained, Flook stands for the proposition that the
prohibition against patenting abstract ideas “cannot be circumvented by
attempting to limit the use of the formula to a particular technological
environment” or adding “insignificant postsolution activity.” Diehr, 450 U.S.,
at 191–192.

We note carefully as well:

>> Diehr explained that while an abstract idea, law of nature, or
mathematical formula could not be patented, “an application of a law of
nature or mathematical formula to a known structure or process may well be
deserving of patent protection.”

>> Finally, the Court concluded that because the claim was not “an attempt
to patent a mathematical formula, but rather [was] an industrial process for
the molding of rubber products,” it fell within §101’s patentable subject
matter. Id., at 192–193.

From a quote via "Justice Breyer, with whom Justice Scalia joins as to Part II,
concurring in the judgment:"

>> “[t]ransformation and reduction of an article to a different state or thing
is the clue to the patentability of a process claim that does not include
particular machines.”

>> Rather, the Court has emphasized that a process claim meets the
requirements of §101 when, “considered as a whole,” it “is performing a
function which the patent laws were designed to protect (e.g., transforming
or reducing an article to a different state or thing).”

The machine running software is assumed not to be a new machine from the
machine as it existed beforehand, any more than a human becomes a new
human when carrying out a different set of steps or following a different
newly learned mental algorithm. I believe "process" patents were intended to
cover the cases of the same machine working in a different fashion.

All processing that exists in software are mental steps. In order to be eligible
for patents (according to the Court), these can be a part of a machine that

performs something otherwise patentable, much as if the software were
factored out and a human were sitting at the controls of such a patentable
machine performing the calculations speedily and then adjusting levers
accordingly.

To look at an example: A general purpose computing device with an
additional display screen, printer, scanner, keyboard, mouse, etc, as used by
ordinary consumers, has no extra patentable component when the hardware
components are taken as a whole (each individually patentable perhaps) and
when software is run on these machines where the result of the software
processing is merely used to produce information eventually to be presented.
The processing of the information is achieved purely through digital
abstraction mental algorithms designed for a well-defined abstract machine
and mimicked on an existing machine that adheres to such a model. This
abstraction of data processing itself is not patentable, and the conversion of
the resulting data into, eg, light waves is but obvious and conventional post
solution activity provided by a standard display screen (and is not creating a
newly patentable process or machine). There is, notably, no new
transformation of matter beyond what is already anticipated by the individual
components.

Note in the prior example that all processing done by any software on the
general purpose machine (no matter its input source) merely produced as an
end goal a form of ordinary data input (eg, digital values) to the machine
components (like the printer or display screen or hard drive or memory) that
then carry out transformations of matter in the expected ways (ie, in no
longer novel ways). This is true no matter how novel are the algorithms
(mental steps) that process the data. There is no novel transformation
occurring of matter.

Fifth, a word on abstract.

Information processing is an abstraction. It is the equivalent of mental steps
no matter which calculator does the processing and which display shows the
results.

The Bilski patent was rejected for being abstract. It too provided little beyond
steps people could undertake using any of many existing suitable tools
(hardware+software combinations) at their disposal.

Conclusion:

I consider software patents a large threat to personal liberties and to
progress. They are particularly threatening (a) because independent creation
through software is accessible readily to any and all yet would arguably be
trumped by patent exclusivity grants; (b) because of the very large number of
progress promoters whose hands would be hand-cuffed; and (c) because of

the very low bar set for granting patents, which, by definition, would curtail
the efforts of the many people having above average skills in the art.

Again, thank you for allowing me to express how I think the Bilski ruling
should help the USPTO revert patent granting to the form when few to no
inventions based just about entirely on the novelty of effects carried out
through software would be granted patents.

Jose Lorenzo
hozelda@yahoo.com
[e-mail redacted]

mailto:hozelda@yahoo.com

